

PREFORM BASED DIFFUSION SOLDERING

FOR HIGH TEMPERATURE ELECTRONIC APPLICATIONS

WHAT IS PFDS400® AND HOW DOES IT WORK ?

- a metallic composite, consisting of a lead-free solder and a metallic carrier
- the solder supports the wettability of the components
- the metallic carrier is the source of the diffusion process
- after soldering the joint consists of intermetallic phases exhibiting hightemperature stability, desoldering temperature >> 400 °C (for the Cu-Sn-System)

3 | GETTING SOLDER INTO SHAPE

CULCULUE (C)

>>> WHAT CAN I EXPECT?

- A very temperature-stable, high-strength, non-ductile joint
- With the right soldering technology, low voiding in the joint – we know how to achieve this
- No requirement for secondary heat treatment
- Increase in thermal conductivity, compared to monolithic solder joints
- Increased reliability of the joint
- A team of engineers to support your specific application and adjust PFDS400[®] as far as possible to meet your demands

>>> TYPES OF PFDS400®

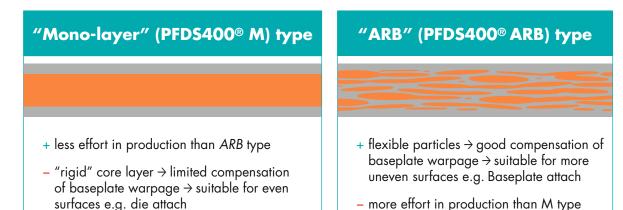
"Mono-layer" (PFDS400[®] M) type

"ARB" (PFDS400[®] ARB) type

Schematic layout in cross section

metallic core double-coated with lead-free Sn- or In- based solder layers metallic particles distributed in a lead-free Sn-based solder matrix

The combination of metals defines the diffusion solder system {e.g. Cu-Sn} and the resulting IMCs (for Cu-Sn: Cu6Sn5 and Cu3Sn)



ADVANTAGES OF PFDS400®

Both PFDS400® types

+ preform-based (perfect volume and easy placement, no further cleaning steps needed)

- + suitable for common reflow-soldering processes (peak temperature depends on the chosen solder constituent, e. g. 260°C for SnAg3.5
- + temperature-stable joint (desoldering temp. > 400 °C), therefore an additional soldering step is no problem for PFDS400®
- + feasible fitting of PFDS400[®] to customer-specific requirements
- + **PFDS400[®]** provides the ability to replace expensive materials and processes e.g. AuSn20 and silver sintering

AVAILABLE PREFORM DIMENSIONS AS OF OCTOBER 2021

	"Mono-layer" (PFDS400® M) type	"ARB" (PFDS400 [®] ARB) type
h	b	h
unit	dimensions	dimensions
height h, mm	0.050 – 0.200(others possible on request)	0.100 – 0.200(others possible on request)
common coating thickness b, mm	 0.008 - 0.012 (others possible on request e.g. 0,015) 	 coating thickness is not homogeneous
width of preforms, mm	• up to 20.0	• up to 40.0
length of preforms, mm	• up to 20.0	• up to 40.0

MATERIAL COMBINATIONS AS OF OCTOBER 2021

"Mono-layer" (PFDS400[®] M) type

"ARB" (PFDS400[®] ARB) type

materials		materials	
solder layers	 Sn-based In-based (under development) 	solder	• Sn-based
metallic core	 Cu-HCP/C10300 Ag Ni (under development) 	metallic particles	 Cu-HCP/C10300 Ag Ni (under development)

MOST SUITABLE CONDITIONS FOR PFDS400® M

Power modules			
Die attach (Si, SiC, GaN)			
feasible reverse-side metallisation	 Ni/Au, Ni/Ag, Cu, Ni, Ag, Au 		
feasible substrates	 DCB/DBC, AMB Substrates with CTE-mismatch compensating layers 		
feasible metallisation of substrate	• Ni, Ag, Cu (bare)		
soldering technique	 vacuum reflow solder furnace, with reducing/ activating atmospheres (preferably HCOOH) application of moderate pressure preferably fluxless to address voiding 		

>>> SUITABLE CONDITIONS FOR PFDS400® M

Other stacks			
Sensors, thermoelectrical modules, sealing,			
feasible metallisation of components	 Ni/Au, Ni/Ag, Cu, Ni, Ag, Au 		
components with matching CTEs	 joints consisting of IMCs show non-ductile behaviour under thermo-mechanical stress 		
soldering technique	 vacuum reflow solder furnace, with activating / reducing atmospheres (HCOOH) application of moderate pressure wafer bonder sinter press preferably fluxless to address voiding 		

SUITABLE CONDITIONS FOR PFDS400[®] ARB

Power modules				
Baseplate attach (Al, AlSiC, Cu) (in development)				
feasible metallisation of baseplate	 Cu, Ni galvanised thickness min. 4µm 			
feasible substrates	• DCB/DBC, AMB			
feasible metallisation of substrate	• Ni, Ag, Cu (bare)			
soldering technique	 vacuum reflow solder furnace, with reducing/ activating atmospheres (preferably HCOOH) application of moderate pressure 			

PFARR Stanztechnik GmbH D 36419 Buttlar Germany Fon +49 (0) 36967 747- 0 Fax +49 (0) 36967 747- 47

info@pfarr.de www.pfarr.de